Effect of particle size on ignition and oxidation of single aluminum: molecular dynamics study

Author:

Darsin MahrosORCID,Fachri Boy AriefORCID,Nurdiansyah HaidzarORCID

Abstract

Alumina nanoparticle is one of the attractive nanoparticles synthesized by the plasma method. The oxidation step in this method is challenging to explain experimentally. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. The simulation method employed the ReaxFF potential. The material used is aluminum nanoparticles in three different sizes (8, 12, and 16 nm) with an oxide layer thickness of 0.5 nm. Aluminum nanoparticles were given a relaxation treatment of 300 K for 1 ps and then heated to a temperature of 3250 K with a heating rate of 5×1013 K/s and cooled to 300 K. The ensemble used is a canonical ensemble with the Nose/Hoover thermostat method. The result shows that the higher the temperature applied to the system, the more oxygen molecules adsorption occurs on the surface of the oxide layer and the diffusion of oxygen to the particle core. The higher temperature applied also causes gaps, or void spaces, between the core and the shell. The reaction barrier for diffusion of oxygen also decreased significantly due to void space, and the surface of the aluminum core dissociates to the surface (alumina shell). Particles with a smaller size have a shorter ignition delay time. In addition, the smaller the particle size, the more oxygen molecules' reacted with aluminum particles in the particle core

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3