Towards enhanced surface roughness modeling in machining: an analysis of data transformation techniques

Author:

Thinh Hoang XuanORCID,Khiem Vu VanORCID,Giang Nguyen TruongORCID

Abstract

Data transformation methods are utilized to convert datasets into non-integer formats, potentially altering their distribution patterns. This implies that the variance and standard deviation of the dataset may be altered after the dataset undergoes data transformation operations. Improving model accuracy is a primary application of these methods. This study compares the efficacy of three data transformation techniques: square root transformation, logarithmic transformation, and inverse transformation. The comparison is conducted within the context of developing a surface roughness model for a turning process. Eighteen experiments are performed using the Box-Behnken method, with surface roughness chosen as the response variable. The surface roughness dataset undergoes transformation using the mentioned methods. Four surface roughness regression models are then built: one without transformation, one with square root transformation, one with logarithmic transformation, and one with inverse transformation. Evaluation metrics include coefficient of determination (R-Sq), adjusted coefficient of determination (R-Sq(adj)), Mean Absolute Error (%MAE), and Mean Squared Error (%MSE). Results indicate logarithmic transformation as the most effective, followed by square root transformation, in enhancing model accuracy. The surface roughness model utilizing data transformation exhibits high R-Sq and R-Sq(adj) values, at 0.8792 and 0.7434 respectively. On the other hand, this model has %MAE and %MSE values of only 10.33 and 2.05 respectively. Conversely, inverse transformation exhibits the least effectiveness among the three methods

Publisher

OU Scientific Route

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Surface Grinding Regression Model Determination with the SRP Method;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3