Improvement of chainsaw sounds identification in the forest environment using maximum ratio combining and classification algorithme

Author:

Gnamele N’tcho Assoukpou JeanORCID,Youan Bi Tra Jean ClaudeORCID,Famien Adjoua Moise LandryORCID

Abstract

To better combat the devastation of the protected forests in Côte d’Ivoire, a study was conducted to create a technique for detecting the acoustic signals produced by chainsaws deployed to fell trees in these areas. To improve the recognition rate of chainsaw sounds in a forest environment and increase the detection range of the recognition system, we are implementing the maximum ratio combining (MRC) technique on a microphone array. Therefore, the employment of an identification system is compared using one (01) microphone against the outcomes obtained by adopting system with three (03), six (06), and twelve (12) microphones. The use of MRC is then contrasted with an alternative recombining approach, referred to as simple summation (SS). The SS is characterized by the mere addition of signals acquired by the network in the frequency domain. The MRC was employed on various microphone arrangements, accounting for varying degrees of attenuation experienced by chainsaw sounds. The K-Nearest Neighbors, in combination with Mel Frequency Cepstral Coefficients (MFCC), was employed to detect chainsaw sounds within the 16 kHz central frequency octave band. MRC applied to microphone arrays provided superior outcomes than simple summation. The enhancement in terms of classification rate ranged from [18; 51], favouring MRC. Moreover, it extended the chainsaw detection range from 520 m (using one microphone) to 1210 m (using a 12-microphone array). Taking into account the criteria for selecting an optimum microphone array, including classification rate, number of microphone nodes, information processing time and detection range, the six-microphone array was chosen as the best configuration. This configuration boasts a theoretical detection range of 1040 meters

Publisher

OU Scientific Route

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3