A DEEP LEARNING MODEL IMPLEMENTATION BASED ON RSSI FINGERPRINTING FOR LORA-BASED INDOOR LOCALIZATION

Author:

Ali Irsan TaufikORCID,Muis AbdulORCID,Sari Riri FitriORCID

Abstract

LoRa technology has received a lot of attention in the last few years. Numerous success stories about using LoRa technology for the Internet of Things in various implementations. Several studies have found that the use of LoRa technology has the opportunity to be implemented in indoor-based applications. LoRa technology is found more stable and is more resilient to environmental changes. Environmental change of the indoor is a major problem to maintain accuracy in position prediction, especially in the use of Received Signal Strength (RSS) fingerprints as a reference database. The variety of approaches to solving accuracy problems continues to improve as the need for indoor localization applications increases. Deep learning approaches as a solution for the use of fingerprints in indoor localization have been carried out in several studies with various novelties offered. Let’s introduce a combination of the use of LoRa technology's excellence with a deep learning method that uses all variations of measurement results of RSS values at each position as a natural feature of the indoor condition as a fingerprint. All of these features are used for training in-deep learning methods. It is DeepFi-LoRaIn which illustrates a new technique for using the fingerprint data of the LoRa device's RSS device on indoor localization using deep learning methods. This method is used to find out how accurate the model produced by the training process is to predict the position in a dynamic environment. The scenario used to evaluate the model is by giving interference to the RSS value received at each anchor node. The model produced through training was found to have good accuracy in predicting the position even in conditions of interference with several anchor nodes. Based on the test results, DeepFi-LoRaIn Technique can be a solution to cope with changing environmental conditions in indoor localization

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RSSI Fingerprinting Using Machine Learning for Position Estimation;2023 International Conference of Computer Science and Information Technology (ICOSNIKOM);2023-11-10

2. Performance Evaluation of LoRa 915 MHz for IoT Communication System on Indonesian Railway Tracks with Environmental Factor Propagation Analysis;2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2023-07-13

3. Hybrid indoor positioning for smart homes using WiFi and Bluetooth low energy technologies;Journal of Ambient Intelligence and Smart Environments;2023-03-27

4. Review of RSSI-based Positioning Algorithm and Accuracy;Frontiers in Computing and Intelligent Systems;2022-11-23

5. Evaluation of Global Positioning System Internet of Things-LoRa based;2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS);2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3