USING MACHINE LEARNING METHODS TO ASSESS RISKS WHEN IMPLEMENTING A NEW CREDIT PRODUCT

Author:

Бобков Сергей Петрович,Суворов Станислав Вадимович,Орлов Артем Игоревич,Пивнев Егор Алексеевич

Abstract

The article discusses the issues of assessing the creditworthiness of individuals using credit scoring. This rating system is an effective approach to determining the level of risk for a specific customer segment. This is especially true of the situation when a credit institution launches a new credit product. The main idea proposed in the article is that new customer scoring cards are created on the basis of existing cards by mathematical data processing. The novelty of the method lies in the fact that the scoring is done based on a dedicated subset of customer data stored in the corporate storage. The approach helps to make a decision on granting a loan and can be recommended for use in lending 

Publisher

Ivanovo State University of Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3