COMPOSITIONS CALCULATION OF COMPLEX DISTILLATION SYSTEM PRODUCT FLOWS BASED ON THE EXTENDED VERSION OF THE MAXIMUM ENTROPY PRINCIPLE

Author:

Balunov Alexander I.

Abstract

A method for calculating the most likely product compositions of athermal mixture separation in complex distillation systems, including systems of simple recycling and non-recycling columns, complex columns with side sampling, systems with joint heat flows, and others. The method is based on an extended version of the maximum entropy principle. The informational entropy of complex experiment involving conditional entropy and conditional probabilities is used as the likelihood criterion. The adopted axiomatic allows one to obtain the most probable component distributions in the product flows of the system, which corresponds to the complex experience maximum entropy in accordance with the balance restrictions. It has been demonstrated that athermal properties accounting of the mixture create dependencies that include entropic activity coefficients associated with the conditional entropy in a typical thermodynamics form. Dependencies are a special case of the correlations obtained for ideal mixtures. The method for calculating the entropy activity coefficients as functions of the components molecule relative volumes and the mixture molar composition has been provided. This method is focused on the design version of the distillation system calculation. It allows to determine the parameters characterizing the process length (the number of theoretical separation steps in the non-selective mode) and the product flow composition products under the product quality restrictions. The accounting of mixture athermal nature leads to an increased duration of the process and has a slight impact on the product compositions. A comparison is given of the results of the calculation of the composition of the product flows of a typical gas fractionating unit with and without taking into account the athermal properties of the mixture to be separated with the data of an industrial experiment.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3