ELECTRONIC STRUCTURE AND CONDUCTIVITY OF HYDROCARBON FILMS OBTAINED IN PLASMA DISCHARGES OF TOKAMAK T-10

Author:

Sokolina Galina A.,Arkhipov Igor I.,Svechnikov Nikolay Yu.,Grashin Sergey A.

Abstract

Amorphous hydrocarbon films on silicon substrates obtained in the chamber of tokamak T-10 with space-bounded deuterium plasma by carbon diaphragms were studied. Using the methods of spectrophotometry, ellipsometry, X-ray photoemission spectroscopy and X-ray excited Auger electron spectroscopy, it was established that the refraction and absorption coefficients of films, as well as the parameters of the electronic structure such as the magnitude of the band gap, the fraction of sp2-hybridized carbon and the chemical composition of impurities depend on the characteristics of the discharge in the tokamak. It is shown that the deposited films refer to high-resistance dielectrics, and they can be classified by optical properties as hard or soft amorphous hydrocarbon films, depending on the type of the plasma discharge (pulse working discharge or long-term low-energy cleaning discharge). Wherein, the conductivity of hard films is less than that of soft films, which corresponds to a smaller fraction of sp2-states of carbon in these films and to a higher value of the band gap. The current-voltage characteristics and the temperature dependence of the direct current conductivity of hard and soft films were measured. It was shown that in the temperature range of 293–550 K, the conductivity is determined by the hopping conductivity mechanism over localized states near the Fermi level and the boundaries of the allowed bands. The hopping conductivity mechanism is also indicated by the power law obtained at room temperature at alternating current with a value of a power exponent close to 0.8. The measurement of the current-voltage characteristics and the temperature dependence of the conductivity of hard and soft films showed a significant difference in the activation energy of conductivity and the conductivity at an elevated temperature. The established dependences of the direct current conductivity and the activation energy value of the films on the discharge parameters can be used as diagnostic benchmarks of different types of plasma discharges in a tokamak. Data on the electrical conductivity of the films are analyzed within the framework of the concept of the electronic structure of amorphous non-crystalline materials.  

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3