ANALYSIS OF KINETIC CHARACTERISTICS OF BAROMEMBRANE AND ELECTROBARMEMBRANE SEPARATION OF AMMONIUM NITRATE SOLUTION

Author:

Lazarev Sergey I.,Kovalev Sergey V.,Konovalov Dmitry N.,Kovaleva Olga A.

Abstract

The paper presents a generalized analysis of literature data on the current-voltage, omics characteristics and electrical conductivity of membrane systems. Based on an analysis of the literature, it is noted that electrodialysis is a promising method for the separation of solutions for the production of ammonium nitrate. An analysis of literature revealed that the application of an external constant electric field to the membrane separation of solutions containing charge-transporting components (nitrate ions and ammonium ions) causes the directed transfer of cations and anions through the membranes. The studies revealed that with the baromembrane separation of the studied solutions with increasing transmembrane pressure, the specific output stream increases. This is due to an increase in the driving force of the process. For the OFAM-K anode membrane, with an increase in the current density, with the electrobaromembrane separation of the ammonium nitrate solution, the specific output stream decreases, which is associated with a change in the pH value of the acidified anode permeate. nd for the OPMN-P cathode membrane, the specific output stream increases with a change in the pH of the alkalized cathode permeate. A modified mathematical equation is proposed for theoretical calculation of the specific output stream and the retention coefficient of the OFAM-K and OPMN-P nanofiltration membranes. Experimental studies of membrane systems equipped with the anode OFAM-K and the near-cathode OPMN-P membranes from voltage and transmembrane pressure revealed that for the aqueous solution of ammonium nitrate there are two characteristic periods on the current-voltage, omics characteristics and electrical conductivity of the membrane system (the first period is beyond regime, dissociation of water (H+ and OH-) at the phase boundary with the advent of additional electric current carriers, the second is the degradation of the active layer of a semipermeable membrane). When studying the current-voltage characteristics of a membrane system equipped with an anode OFAM-K and a near-cathode OPMN-P membranes, when separating model and technological solutions, a decrease in the total omics resistance of the system is observed, which is associated with the solution throttling process.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3