EXTRACTION OF METAL IONS BY 4-BENZOYL- OR 4-(3-NYTROBENZOYL-1-HEXYL- 3-METHYL-2-PYRAZOLINE-5-ONES

Author:

Lesnov Andrey E.,Pustovik Larisa V.,Sarana Irina A.

Abstract

The extraction properties of solutions of 4-benzoyl- and 4- (3-nitrobenzoyl) -1-hexyl-3-methyl-2-pyrazolin-5-ones in chloroform were studied. The pH dependence of the degree of extraction is S-shaped. Ions Cu2+, Pb2+, Zn2+, Ni2+, Co2+, Mn2+, Cd2+, Ca2+, Mg2+ are extracted in the form of complexes with the ratio M (II): reagent determined by the equilibrium shift method equals to 1: 2. A lower equilibrium pH than the initial value indicates a cation-exchange extraction mechanism. The introduction of an electronegative nitro group into the benzoyl fragment of the reagent led to a shift in the pH50 values of the extraction of metal ions in a more acidic region. The presence of a correlation between the values of the Klopman hardness parameters of the above metal cations and extraction pH50 values was shown. The influence of the nature of the solvent on the extraction of zinc ions was studied. The addition of polar isopentanol to the extractant shifts the pH of the metal extraction to a more acidic region. In order to increase the pH50 value of zinc extraction, the solvents are arranged in a row: 30% isopentanol in CHCl3 < benzene < xylene < toluene < chloroform < dichloroethane. The introduction of additional neutral electron-donating hydrophobic organic compounds into the extract: 1-hexyl-3-methyl-2-pyrazolin-5-one, triisobutyl phosphate, trioctylphosphine oxide significantly increases the values of the partition coefficients of zinc. The observed synergistic effect is explained by the formation of a coordinatively unsaturated intracomplex compound of zinc with aroylpyrazolone, in which the free coordination sites are filled with neutral reagent molecules. In this case, water is replaced and due to the increased hydrophobicity of the complex, an increase in extraction occurs. Confirmation of the formation of a coordination-unsaturated zinc complex is a close to unity value of the slope of the decimal logarithm of the metal distribution constant for pH.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3