NITROGEN-DOPED TITANIUM DIOXIDE NANOFILMS FOR MEDICAL APPLICATION

Author:

Boytsova Elena L.,Leonova Lilia A.,Pustovalova Alla A.

Abstract

 The results of study of nitrogen-containing titanium dioxide nanofilms (N-TiO2) are presented in this work. These nanofilms are used in biomedicine as a biocoating of the implants that is why the problem of increasing resistance is very essential. Biocoatings were deposited by reactive magnetron sputtering at different bias voltages Ub = 0-100 V. Doping of the oxide film with nitrogen, with technological replacement of oxygen by nitrogen atoms, changes the material properties: antithrombogenic qualities appear and hemocompatibility rates increase. The corrosion resistance rates of the film are also increased. The biocoatings are partially dissolved, when interacting with biological fluids, with a further release/formation of compounds with an N-O bond, which are essential for human activity. X-ray diffraction (XRD) was used to study the phase transition and crystallinity of nanofilms. The rutile phase dominates (68%) when a negative bias in these films was used. The volume of the fraction increases permanently with increasing of nitrogen content in the composition of the reactive gas, while the volume fraction of anatase decreases to 10%. The surface morphology was studied using scanning electron microscopy. It was established that the films have a more fine-grained structure than at the displacement equals zero. Chemical stability and the presence of elements were observed using X-ray fluorescence spectrometry (XFS) and atomic emission spectrometry (AES). The results of measurement of the contact angle and the surface energy are presented. The results of the study showed the influense of bias voltage on the phase composition, surface morphology and chemical properties of N-TiO2 nanofilms. The analysis of the results suggests that N-TiO2 films under consideration may play the role of nitric oxide depot directly in the field of pathology if they serve as implants coating.  

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3