Abstract
In this work, we have studied the physicochemical behaviors of oxidation-reduction of 2,3-dichloro-1,4-naphthoquinone (NQ) and 2-chloro-3-((4-hydroxyphenyl) amino)-1,4-naphthoquinone (NQ1) synthesized on the basis of NQ, on impregnated graphite electrode. The nature of the electrochemical processes was determined and the mechanism of oxidation-reduction of substances was assumed. The operating conditions for the voltammetric determination of compounds on an impregnated graphite electrode were selected, such as the supporting electrolyte – 0.1 M NaClO4 solution in 96% ethanol (pH=2 for NQ, pH=10 for NQ1), V=100 mV·s-1, as well as the potential and time of accumulation (Eacc +1 V; tacc 50 s for NQ and Eacc -1 V; tacc 30 s for NQ1). It is shown that the pH of the supporting electrolyte has a high influence on NQ and NQ1 analytical signal. For NQ, the current reaches its maximum value at pH = 2. For NQ1, the opposite effect of pH on the current intensity is observed: the maximum current value is reached at pH = 12. The linear dependence of the reduction peak current at a potential of 0.12 V on the concentration of NQ is observed in the range 2·10-5 – 8·10-4 mol·l-1 with the regression equation I=3.14C - 0.35 (R2=0.9992). For NQ1, the linear range of the calibration curve of the electro oxidation current at a potential of -0.58 V on the concentration is maintained in the range 1·10-6 – 8·10-4 mol·l-1 with regression equation I=45.74C +0.37 (R2=0.9992). The detection limit (LOD) for NQ, calculated according to the 3S criterion, is 7.2·10-6 mol·l-1, for NQ1 8·10-7 mol·l-1. The accuracy of the method of analyzed compounds quantitative determination in the substance was checked by the "spiked test" method.
Publisher
Ivanovo State University of Chemistry and Technology
Subject
General Chemical Engineering,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献