INFLUENCE OF LOW-FREQUENCY ACOUSTIC FIELD AND POLYMER ADDITIVE ON STRUCTURAL AND MECHANICAL PROPERTIES OF OIL

Author:

Loskutova Juliya V.,Yudina Natalya V.,Daneker Valeriy A.

Abstract

The goal of this work is to study the influence of low-frequency acoustic field and polymer additive on structural and mechanical properties of problematic quick-freezing oil. The results were acquired by methods of rotational viscosimetry and finding phase transition temperatures by using optical density of infrared light as well as optical microscopy method. Highly paraffinic low-resin oil (Tomsk region) was exposed to low-frequency acoustic field (f = 50 Hz, 1 and 3 min of processing at 0 °С), a chemical reagent, the complex-action polymer additive D-210 (0.05% mass concentration in oil) and complex physical-chemical processing This work studies external influence on viscosity, temperature and energy characteristics, phase transition temperature as well as structure of oil residue. It was shown that in the case of problematic oil at a temperature close to freezing point, the acoustic influence leads to increase of viscosity and temperature properties. After adding the additive to processed oil during the complex processing, the thixotropic structure is destroyed, which is followed by a sharp decrease in viscosity, cloud point and freezing point. There is also a decrease in energy parameters, such as activation energy of viscous flow and internal energy of a disperse system. To determine the temperature of spontaneous crystallization we plotted the differential curves of viscosity coefficient dependence on the temperature of the medium. Study of the microstructure of the oil residue had shown that it contains small linear single-crystal and spherical formations prior to acoustic processing. After processing, however, such formations display a significant growth. The structure of the residue after complex processing is represented by many large plate paraffin crystallites.  

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3