NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE AND ITS OPPORTUNITIES FOR APPLICATIONS

Author:

Yuri S. Akishev Yuri S.

Abstract

The subject of this review is the low-temperature (or "cold") weakly-ionized but strongly non-equilibrium plasma created at atmospheric pressure in gaseous mixtures or directly in atmospheric air. Cold plasma is rather new, but very perspective object. The strong non-equilibrium of the weakly-ionized plasma leads to that energetic electrons despite their small quantity very effectively excite and dissociate the neutral particles which are contained in surrounding gas, for example, of a molecule of oxygen and water. The pointed above property of cold plasma is valuable from the practical point of view because it allows creating in plasma-forming gas rather intensive ultra-violet radiation and high concentration of physically and biochemically reactive species (metastable atoms and molecules, radicals, ozone, and others) with rather small specific energy consumption. Now the usage of cold plasma at atmospheric pressure gives the opportunity to solve many practical problems which were earlier seeming unsolvable. It is possible even to claim that the approaches based on the use of cold plasma in dense gases define modern progress in many fields of science, biomedicine and, in particular, in the field of chemical technology. The review of modern experimental methods of creation of the cold plasma at atmospheric pressure is given. Physical and chemical features of cold plasma in dense gases have been considered. Special attention is paid to the kinetics of the charged particles in non-equilibrium plasma and the vibrationally excited molecules as well. Additionally, the kinetics of the electronic excited and metastable states is taken into account because they also influence a biochemical activity of low-temperature plasma. A lot of places is given to concrete examples of the modern practical use of such plasma in ecology for the destruction of the low-concentrated harmful organic and inorganic impurities in the exhausted airflows at atmospheric pressure.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3