EFFECT OF DURATION OF OXYCHLORINATION ON DEGREE OF ACCESSIBILITY FOR CATALYSIS OF PLATINUM CENTERS OF PLATINUM-RHENIUM REFORMING CATALYST

Author:

Starostin Andrey G.,Khodyashev Nikolai B.

Abstract

The work presents the results of a chemisorption analysis of a platinum-rhenium catalyst on an alumina support after regeneration and reduction with hydrogen. Adsorption-desorption diagrams were obtained by stepwise-pulsed chemisorption of carbon monoxide on reforming catalyst samples. With an increase in the number of carbon monoxide injections from 1 to 4, the catalyst sample is poisoned, and subsequent desorption peaks indicate the termination of the interaction. With an increase in the time of oxychlorination, the CO/Pt ratio in the carrier volume increases linearly. The effect of the oxychlorination process on the chemisorption of CO and the subsequent availability of platinum nanoparticles for catalysis has been shown. The absorption on freshly prepared platinum-rhenium catalyst samples reaches a CO/Pt molar ratio of about 0.4. The results show that the duration of oxychlorination for 16–20 h allows us to achieve the value of the ratio CO/Pt, which is in the range of 0.4-0.5. This indicates that the availability of platinum centers in its composition reaches the level of a fresh catalyst, and, on the other hand, taking into account a slight excess of this ratio, we can assume that some of the Re atoms participate in the absorption of CO molecules. The presence of finely dispersed platinum particles in the composition of the regenerated catalyst was confirmed by IR spectroscopy. The analysis of catalyst samples on an IR spectrometer in the frequency range of 1900-2200 cm-1 revealed a rather wide absorption band with a pronounced extremum at 2060 cm-1. In this frequency range, there is another, slightly pronounced extremum at 2149 cm-1. However, for samples with a short duration of oxychlorination, it did not appear. An absorption band with an extremum of 2060 cm-1 can be attributed to linear vibrations of adsorbed CO molecules on the surface of particles of metallic platinum.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3