OBTAINING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYOLEFINS AND HUSK OF SUNFLOWER SEEDS

Author:

Shabarin Alexander A.,Kuzmin Anton M.,Vodyakov Vladimir N.,Shabarin Igor A.

Abstract

The paper presents the results of a comparative study of physical and mechanical, rheological, and biodegradable characteristics of a mixture containing low- and high-pressure polyethylene (HDPE 273-83 and HDPE 15303-003, respectively) in a 1:1 ratio filled with finely ground (less than 200 microns) sunflower husk (5-30% by weight). The mixture also contained 10% compatibilizer (functionalized by the method of alkaline alcoholysis of sevilen (SEVA 12206-007) and 1% of technological additive (polyethylene glycol (PEG-115 (4000). It has been established that as the content of the plant filler increases (up to 25%), the elastic modulus and tensile strength has not practically changed. The relative elongation of the composite under tension exceeds 100% (with a sunflower husk content up to 15% by weight). The complex viscosity and shear modulus of the considered melts with different filler contents are almost at the same level. The introduction of sunflower husk (up to 30%) and compatibilizer (10%) helps to reduce the viscosity and elasticity of the melts, which is evidence of a significant improvement in the processability of the compositions compared to HDPE 273-83. For a comparative assessment of composites biodegradability, moisture absorption, chemical oxygen consumption, and composites mass loss in laboratory soil during exposure for 12 months were being studied. It is shown that with increasing filler content, the ability of composites to biodegradation increases. In addition, it was found that the indicator of chemical oxygen consumption per unit surface area of the sample is a more productive and reproducible estimate in comparison with traditional methods for assessing the degradability of composite materials.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3