OBTAINING HIGH QUALITY LITHIUM CARBONATE FROM NATURAL LITHIUM-CONTAINING BRINES

Author:

Ramazanov Arsen Sh.,Ataev David R.,Kasparov Miyasat A.

Abstract

The aim of this work is to develop a new effective technology for producing high-quality lithium carbonate from natural lithium-containing brines. Freshly deposited aluminum hydroxide was used to separate lithium from the trace amounts of sodium and calcium. It was found that the completeness of lithium extraction from brines purified from magnesium depends on the sorbent dosage, phase contact time, mineralization, pH, and brine temperature. To extract lithium from brines with a mineralization of less than 100 g/dm3, it is necessary to introduce 4 mol of aluminum hydroxide per 1 mol of lithium in the brine. For brines with a mineralization greater than 200 g/dm3, the consumption of the sorbent providing the extraction of lithium more than 96% is 2.5 mol of aluminum hydroxide. Desorption of lithium chloride from lithium-aluminum concentrate is carried out by processing 4-5 canopies of concentrate in a Soxlet type apparatus with the same volume of distilled water. The resulting concentrated solution of lithium chloride is purified from calcium impurities in contact with a saturated solution of lithium carbonate. From a heated aqueous solution of lithium chloride purified from calcium impurities, lithium carbonate is precipitated by dosing a stoichiometric amount of a saturated solution of sodium carbonate into it. The precipitate of lithium carbonate is separated from the mother solution, washed with three portions of a saturated solution of lithium carbonate at a ratio of solid to liquid by weight equal to one to five, in order of decreasing the concentration of sodium in each portion of the wash water. The dried product contains at least 99.6% Li2CO3.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3