DESIGN AND VERIFICATION OF THE MODEL OF STRUCTURE FORMATION AND HEAT TRANSFER IN A FLUIDIZED BED APPARATUS WITH A HEAT JACKET

Author:

Abstract

A one-dimensional mathematical model of the formation of a fluidized bed and the evolution of its thermal state during the heating of an ensemble of particles is proposed based on the mathematical apparatus of the Markov chain theory. When describing the thermal state of the system, the processes of interfacial heat exchange between the gas flow and particles, as well as between the wall of the apparatus and the gas suspension, were taken into account. The results of previous studies and known empirical regularities for the material constants of the process were used to identify the parameters of the model. The parametric identification made it possible to adapt and apply the mathematical model for calculating the process of heat treatment of the suspension of silicate sand particles in an apparatus with a fluidized bed of a periodic principle of operation equipped with a heating jacket. Verification of the predictive capabilities of the physicomathematical model adapted in this way was carried out by comparing the forecasts obtained by calculation with the results of the full-scale experiment conducted during the study. To conduct the full-scale experiment, a sample of sand particles was placed in the apparatus, which was previously output to the established thermal regime of operation. After loading the material, a set of thermocouples equidistant from each other was placed in the apparatus and temperature readings were taken at different heights from the level of the gas distributor. The temperature distributions obtained in this way along the bed height were in good agreement with the calculated forecasts and show a significant heterogeneity of the gas phase temperature fields. The temperature of the particles was estimated only as an integral characteristic by measurements of the heat content of the bulk medium after unloading from the apparatus. The integral temperature of the particles also turned out to be close to the predicted values. In addition, during the computational and experimental study, the kinetic characteristics of the heating of the suspension of the material were clarified. Thus, the proposed mathematical model has sufficient predictive efficiency for engineering tasks and can be considered as a basis for constructing a computer method for calculating heat exchangers with a heating jacket using the fluidization technique of bulk media. For citation: Mitrofanov A.V., Vasilevich S.V., Mal’ko M.V., Ogurtzov A.V., Shpeynova N.S. Design and verification of the model of structure formation and heat transfer in a fluidized bed apparatus with a heat jacket. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 5. P. 128-138. DOI: 10.6060/ivkkt.20236605.6748.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3