INVESTIGATION OF STRESS-STRAIN STATE OF CYLINDRICAL BODY OF MODIFIED HDPE

Author:

Litvinov Stepan V.,Lesniak Lyubov I.,Yazyev Serdar B.,Zotov Ivan M.

Abstract

The change in the stress-strain state over time in structures and their elements from polymeric materials can be quite substantial. This is due to the pronounced rheology of the polymers. One of the most accurate laws of stress-strain bond is generalized nonlinear Maxwell-Gurevich equation, which takes into account three rheological parameters: the modulus of elasticity, the velocity modulus and the coefficient of initial relaxation viscosity. A significant influence on the physico-mechanical parameters of the polymer is also exerted by various factors: the presence of a temperature field and ionizing radiation, the presence of additives in the polymer and so on. The paper presents the results of mathematical modeling of a disc made of high-density polyethylene (HDPE) in an axisymmetric setting under the influence of mechanical axial pressure. This model is chosen because of the most frequent use of HDPE irradiated and with additives in medicine, including for the manufacture of orthopedic prostheses. Different compositions of HDPE are considered: under the influence of ionizing radiation, with additives of hydroxyapatite and with their combined effect. All physico-mechanical parameters of HDPE (dose of ionizing radiation and the fraction of hydroxyapatite injected) are described by mathematical expressions obtained in the scientific school of Professor B.M. Yazyev on the basis of an analysis of the corresponding polymer relaxation curves. The results of the solution of the problem have shown that the basic stresses (radial, circumferential and axial) vary in the course of time in different ways. The growth of the value of the primary basic stresses can be 2-2.5 times. If the analysis is carried out on the main stresses, then their value increases by approximately 1.5 times. Also, the change in the principal stresses is observed even when it is not observed for the basic stresses.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3