PRODUCTION AND PROPERTIES OF COMPOSITE ELECTROCHEMICAL COATINGS WITH ELECTROCHEMICALLY DISPERSED GRAPHENE BASED ON NICKEL MATRIX

Author:

Bratkov Iliya V.,Yudina Tatiana F.,Melnikov Aleksey G.,Bratkov Artyem V.

Abstract

In this work, the effect of addition of colloidal solutions of electrochemical exfoliated graphene (EEG) to the Watts bath on the process of obtaining composite coatings based on a nickel matrix was studied. It was found that the introduction of nanoparticle additives has a significant effect on the value of cathodic overvoltage during electro reduction of Ni2+. The strongest inhibition of the cathode process takes place with the introduction of 0.2 g/l of additives investigated. Further increase in the concentration of nanoparticles in the bath reduces the effect. The inhibition of the cathodic reduction of Ni2+ is associated with the adsorption of graphene nanoparticles on the active faces of growing nickel crystallites and the blocking of the accessible surface for Ni2+ reduction. Due to the increase in cathodic polarization during the deposition of the composite coating, the crystallites of the deposited nickel decrease in size and the texture of the crystal structure of the coating changes. According to energy dispersive spectroscopy data, carbon has been included in the composite coating. The carbon content in the coating increases with increasing concentration of nanoparticles in the working electrolyte. The inclusion of negatively charged nanoparticles of electrochemically dispersed graphene in the resulting precipitate becomes possible due to adsorption of Ni2+ and recharging of graphene nanoparticles. It was found that the optimal concentration of electrochemically dispersed graphene in the working electrolyte is 0.1-0.2 g/l. At a given nanoparticle content in the working bath, the porosity and roughness of the coatings decreases. The Tafel polarization curves for composite coating samples obtained in a 0.5M NaCl solution showed that the inclusion of graphene nanoparticles in the resulting coating leads to a shift of the corrosion potential to the negative area. With an increase in the carbon content in the coating, the shift in corrosion potentials increases, and the value of corrosion currents increases. For samples of composite coatings obtained at an EEG additive concentration of 0.1 g/l, a slight improvement in the protective properties is noted, which is associated with a decrease in the porosity of the coatings.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3