PROMISING TECHNOLOGY FOR REMOVAL AND DISPOSAL OF HYDROGEN SULFIDE FROM FUEL OIL

Author:

Pivovarova Nadezhda A.,Akishina Ekaterina S.,Berberova Nadezhda T.,Shinkar Elena V.

Abstract

The presence of hydrogen sulfide in fuel oil is a danger, since hydrogen sulfide is concentrated in the gas phase of tanks, vessels and tanks truck that when carrying out operations of drainage-fulness can lead to an excess of its MAC in air and to the creation of explosive mixtures. The concentration of H2S in fuel oil produced at refineries is 20-500 ppm, while its content in commercial fuel is limited to 10 ppm. Analytical methods of definition of concentration of a hydrogen sulfide in oil products are considered. Industrial and promising technologies for reducing H2S in fuel oil, their main merits and demerits are presented. The possibilities of low-energy wave technologies in the refinement of petroleum and oil products and mechanisms of action of ultrasound and constant magnetic field on oil disperse systems are shown. The hydrogen sulfide extracted from fuel oil neither on volumes, nor on concentration can't be used as independent raw materials for processing into elemental sulfur in the Claus process and is a toxic by-product. At the same time, hydrogen sulfide-containing wastes can serve as valuable raw materials for the production of wide range of useful organic compounds (antioxidants, drugs, pesticides, fungicides) in electrochemical processes. In processes of low-tonnage chemistry, electrochemical processes are relevant. As a result of anode or cathode activation of a hydrogen sulfide (alkanethiols) at ambient temperature and atmospheric pressure the thiyl (alkylthiyl) radical is formed. Along with products of a thiolation of organic compounds are formed also mono - di - and the trisulphides having higher biological activity and lower toxiferous in comparison with thiols. The competitiveness of electrosynthesis is very high, it is considered as processes of waste-free production as at the heart of it ecologically focused idea of "green chemistry" is concluded.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3