LIPOSOMAL HYBRID SILICON - ORGANIC MEANS OF DELIVERY OF MEDICINAL PREPARATIONS

Author:

Denieva Zaret G.,Budanova Ul'yana A.,Sebyakin Yuri L.

Abstract

Nowadays, chemotherapy is an important mean for cancer treatment. Despite many benefits, patients receiving anticancer drugs often suffer unfavorable side effects due to the non-specific toxicity of anticancer drugs. Most anticancer drugs can kill cancer cells with non-selective killing of the normal human cells, which brings great pains to patients. One of the most important tasks facing pharmacology is the creation of such systems that would minimize the harm caused by therapeutic drugs. One way to overcome these problems is to create drug delivery systems. Much attention is attracted the liposomes as delivery systems. They consist of natural components that can minimize toxicity in relation to the human body, so liposomes are interest to study. However, one of the limitations preventing the wide use of liposomes is their insufficient stability under physiological conditions. This property can lead to the fact that the drug will be released from the delivery system until the desired cells or tissues are reached, which means that it damages healthy cells. The problem of stability can be solved by systems called cerasomes. These are nanosized spherical particles consisting of the lipid bilayer as well as liposomes, but their surface is modified by a silicon polymer network. Liposomal nanohybrid cerasomes have been developed based on organoalkoxysilane through a sol-gel reaction in combination with self-assembly process. Among inorganic materials, silicon is an excellent choice to form hydrophilic surface shell due to its high chemical resistance, optical transparency and low physiological toxicity. In addition, cerasomes have better biocompatibility than silicon nanoparticles that have a similar size. They are inert and exhibit less cytotoxicity. Cerasomes are very convenient to store for a certain time due to their physical and chemical properties. Equally important is the fact that cerasomes are capable of encapsulate a wide range of drug molecules. Water-soluble drugs are built into the internal field of the vesicles, and hydrophobic drugs are built into the bilayer lipid membrane. So cerasomes can solve many problems associated with drug molecules like low drug solubility, fast clearance rates, non-specific toxicity, thereby enhancing therapeutic efficiency and reducing side effects. Also, various functional molecules can be included to cerasomes that show thermo-, light-, pH- or multi sensitive properties by chemical conjugation with different molecules in order to modulate the release behavior of the drug. Therefore, cerasomes, serving as delivery carriers, possess great potential for clinical applications due to their unique advantages. This review will summarize the progress of liposomal nanohybrid cerasomes and their applications as drug nanocarriers, transfection of gene materials, systems for visualization and diagnosis of diseases using MRI and PDT. It presents some methods of the synthesis of cerasome-forming lipids to create stable systems of cerasomes. Various approaches of the formation of a siloxane network on their surface are considered. Various variants of modifications of cerasome-forming lipids are presented.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vesicle Delivery Systems of Biologically Active Compounds: From Liposomes to Cerasomes;Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3