MECHANOCHEMICAL HYDROPHOBIZATION OF MONOAMMONIUM PHOSPHATE

Author:

Kunin Alexey V.

Abstract

Here, we investigated the influence of mechanical treatment on hydrophobization of monoammonium phosphate (MAP) with organosilicon liquid and silicon dioxide in order to obtain the main component of multipurpose fire extinguishing powders. We estimated hydrophobic properties of mixtures of various compositions. Based on the obtained results, the optimal content of hydrophobizing agents for obtaining monoammonium phosphate with the best hydrophobic properties was established. It is shown that the use of only organosilicon liquid for mechanochemical hydrophobization of MAP is not enough to achieve required values for water repellency, tendency to aggregation, bulk density and particle size distribution. According to GOST R 53280.4-2009, the ability to repel water (powders should not completely absorb water droplets) should be at least 120 min; the tendency to caking (mass of the formed aggregates) should not exceed 2% of the total mass of the sample; the apparent density of uncompacted and compacted powders should be at least 700 and 1000 kg/m3, respectively. It was found that in order to achieve the specified parameters, the mechanochemical hydrophobization of monoammonium phosphate should include modification of the mixture which contains 95 wt. % ammonium phosphate, 4.5 wt. % silicon dioxide and 0.5 wt. % hydrophobizing organosilicon liquid (HOL) in a mill with shock-shear loading at an input energy of 100-110 J/g. The absence of moisture in the raw material (preliminary drying of MAP particles) allows us to obtain a finer-grained product with a low tendency to moisture absorption. The process of mechanochemical hydrophobization of MAP can be described in the following way. During grinding hydrophobized silicon dioxide covers the particles of monoammonium phosphate, resulting in blocking active centers of adsorption and creating a structural and mechanical barrier that prevents particle aggregation.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3