EFFECT OF MECHANICAL ACTIVATION OF REAGENTS ON SYNTHESIS OF Li-Sm FERRITE

Author:

Abstract

The effect of the energy intensity of mechanical grinding of Sm2O3(14.7 wt.%)//Fe2O3(77.5 wt.%)/Li2CO2(7.8 wt.%) powder reagents on synthesis of Li-Sm ferrite was investigated by X-ray diffraction analysis, thermogravimetry, and differential scanning calorimetry. The study used a Retsch E-max ball mill, which provides different energy intensity of mechanical grinding at different rotational speed of 300, 1000, and 1500 rpm. The interaction between the initial reagents was analyzed through heating the powder mixture to 900 °C in air in the furnace of the Netzsch STA 449C Jupiter thermal analyzer. A complete cycle of ferrite synthesis, including high temperature isothermal holding, was performed in the laboratory furnace at 900 °C for 240 min. It was found that at increased energy intensity of powder grinding, the temperature range of interaction between Sm2O3/Fe2O3/Li2CO3 shifts to lower temperatures by 200 °С, which indicates an increased reactivity of powder reagents. In this case, a two-phase composite material is formed during synthesis, which consists of unsubstituted lithium ferrite α-Li0.5Fe2.5O4 (81.0–81.8 wt.%) and SmFeO3 (18.2–19 wt.%). Within the limits of the experimental error, the concentration ratio of the synthesized phases does not depend on the energy intensity of grinding the initial reagents. Synthesis of unsubstituted lithium ferrite was confirmed by X-ray diffraction data (lattice parameter of ~0.833 nm), an endothermic peak in the differential scanning curve indicating the α-Li0.5Fe2.5O4 →β-Li0.5Fe2.5O4 transition, and by the Curie temperature (~630 °C) determined by thermogravimetry in a magnetic field. The result obtained may generate interest in the technology of ferrites of new compositions substituted with rare earth elements, which possess unique properties.

Publisher

Ivanovo State University of Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3