CATHODIC HYDROGEN EVOLUTION ON COBALT MONOSILICIDE IN POTASSIUM HYDROXIDE SOLUTION

Author:

Shamsutdinov Artyom Sh.,Shein Anatoliy B.

Abstract

The kinetics of hydrogen evolution reaction on cobalt monosilicide CoSi in potassium hydroxide solution was studied using methods of polarization and impedance measurements. Electrochemical impedance of CoSi was studied in 1 M KOH at 21-22 °C in the range of potentials of hydrogen evolution. Solutions were prepared from high-purity reagents and de-ionized water (Milli-Q). The working solutions were de-aerated with hydrogen (purity 99.999 %). Cobalt silicide was prepared from silicon (99.99 % purity) and electrolytic cobalt (99.98 % purity) by Czochralski method (pulling from the melt at speed of 0.4 mm/min). Electrodes were cut using electric-spark method. The working electrode surface was 0.4 – 0.6 cm2. Before measurements, the working electrode surface was abraded with emery papers of 1000 and 2000, cleaned with ethanol and washed in the working solution. Electrochemical measurements were carried out in three-electrode electrochemical cell with cathodic and anodic compartments separated with a porous glass diaphragm. Potentials Е were changed from low to high cathodic polarisations and vice versa. Before recording an impedance spectrum at each potential value, the electrode was polarised under potentiostatic conditions until constant value of current was reached. The electrode potentials are given with respect to the SHE. Impedance measurements were carried out using FRA Solartron and potentiostat Solartron 1280 (Solartron Analytical) in the frequency range from 10 kHz to 0.01 Hz (10 points per decade). The alternating signal amplitude was 10 mV. The CorrWare2, ZPlot2 and ZView2 software (Scribner Associates, Inc.) was used for measuring and processing the impedance data. In 1 М KOH polarization curve for CoSi-electrode has Tafel plot with the slope bk = 0.113 V. Earlier it was established that b for Со2Ѕі and CoSi2 at these conditions were 0.123 and 0.105 V, respectively, while b for Co was equal to 0.144 V. Tafel slope for cobalt monosilicide is less than Co, i.e. the difference between the current densities on the silicide and cobalt increases with increasing in cathodic polarization. At a constant electrode potential E, the current density i for CoSi is higher than for Co (at E = -1.2 V the value of i for CoSi is equal to 1.58 mA/cm2, and for Co i = 0.32 mA/cm2). Nyquist diagrams consist of the combination of capacitive semicircle at high frequencies and an inductive arc at low frequencies. Impedance spectra of cobalt silicide can not be accurately described by a simple equivalent circuit consisting of parallel-connected charge transfer resistance and the double layer capacitance. In order to describe the behavior of CoSi - electrode in 1 M KOH solution in the range of investigated potentials the equivalent circuit was used which was obtained in several works as a model of two-stage process with the adsorption of intermediate substances, in particular for hydrogen evolution reaction. In order to analyze the impedance data we used the diagnostic criteria for hydrogen evolution reaction mechanisms, based on the dependence of equivalent circuit elements on the overvoltage and OH- ions concentration, which were previously proposed. Determination of the kinetic parameters (rate constants and transfer coefficients) of hydrogen evolution reaction steps on the basis of the impedance data has been considered. Hydrogen evolution reaction on CoSi electrode in alkaline solution is discussed using the proposed criteria. It has been shown that hydrogen evolution reaction on CoSi in potassium hydroxide solution proceeds through the Volmer-Heyrovsky route with Heyrovsky reaction as the rate-determining and with the Langmuir isotherm for hydrogen adsorption. Forcitation:Shamsutdinov A.Sh., Shein A.B. Cathodic hydrogen evolution on cobalt monosilicide in potassium hydroxide solution. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 10. P. 9-15

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3