OXIDATIVE CONVERSION OF METHANE OVER ReOX/ALUMINA CATALYSTS

Author:

Ismailov Etibar H.,Osmanova Sevinj N.,Kerimova Ulviya A.

Abstract

ReOx/alumina samples have been studied as catalysts for the oxidative conversion of methane. It was shown that the reaction of methane with an oxidized and then evacuated at this temperature (973 K, 1 h) samples leads to the formation of primarily C2H6, C2H4 and CO2, and then only CO and C6H6. The formation of ethane and ethylene in the initial stage of the reaction of methane with ReOx / alumina samples is the result of the reaction of oxidative condensation of methane with the formation of ethane, followed by its dehydrogenation to ethylene. The reaction proceeds with the participation of O-• ion-radical type (V-type defect) centers of the ReOx / aluminum-oxide structure (CH4 + [O-•] = CH3• + OH-, 2CH3• = C2H6). CO2 is formed by the oxidation of methane with surface oxygen forms (O22- and / and O2-•) oxide structure. Direct oxidation of methane to methanol and further splitting of the latter to CO and H2 in our case are not excluded: CH4 + ReOx/Al2O3 = CO + 2H2 + ReOx-1/Al2O3. It was shown that catalysts preliminarily oxidized at 973 K for 1 h in oxygen and then evacuated at the same temperature for 1 h are characterized by ESR spectra belonging to the paramagnetic Re6+ ion with 5d1 unpaired electron and strong Re=O bond. The ESR spectra of this ion are characterized by a hyperfine structure (A║ = 48.3 mT) due to the interaction of an unpaired electron with 185.187Re magnetic nuclei having the spin of I = 5/2 and are easily observed at room temperature for all samples. The ESR signals of these centers disappear after the interaction of samples evacuated at high temperature (973 K) with methane. It was shown that high-temperature contact of this sample with methane leads to the formation of centers that catalyze the oxidative dehydrocyclization of methane. The degree of oxidation of rhenium ions in these samples is less than 6+, and these ions are coordinatively unsaturated. To maintain the activity of the catalyst, its regeneration is required. Activation of the catalyst is achieved by short-term heat treatment in oxygen flow followed by purging with an inert gas (nitrogen, argon). Forcitation:Ismailov E.H., Osmanova S.N., Kerimova U.A. Oxidative conversion of methane over ReOx/Alumina catalysts. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 8. P. 65-69.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3