Vacuolization of mucolipidosis type II mouse exocrine gland cells represents accumulation of autolysosomes

Author:

Boonen Marielle1,van Meel Eline2,Oorschot Viola2,Klumperman Judith2,Kornfeld Stuart1

Affiliation:

1. Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110

2. Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

Abstract

We previously reported that mice deficient in UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase (mucolipidosis type II or Gnptab −/− mice), the enzyme that initiates the addition of the mannose 6-phosphate lysosomal sorting signal on acid hydrolases, exhibited extensive vacuolization of their exocrine gland cells, while the liver, brain, and muscle appeared grossly unaffected. Similar pathological findings were observed in several exocrine glands of patients with mucolipidosis II. To understand the basis for this cell type–specific abnormality, we analyzed these tissues in Gnptab −/− mice using a combined immunoelectron microscopy and biochemical approach. We demonstrate that the vacuoles in the exocrine glands are enlarged autolysosomes containing undigested cytoplasmic material that accumulate secondary to deficient lysosomal function. Surprisingly, the acid hydrolase levels in these tissues ranged from normal to modestly decreased, in contrast to skin fibroblasts, which accumulate enlarged lysosomes and/or autolysosomes also but exhibit very low levels of acid hydrolases. We propose that the lysosomal defect in the exocrine cells is caused by the combination of increased secretion of the acid hydrolases via the constitutive pathway along with their entrapment in secretory granules. Taken together, our results provide new insights into the mechanisms of the tissue-specific abnormalities seen in mucolipidosis type II.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3