Affiliation:
1. Physiology Department, University College London, United Kingdom.
Abstract
In mast cells, activation of GTP-binding proteins induces centripetal reorganization of actin filaments. This effect is due to disassembly, relocalization, and polymerization of F-actin and is dependent on two small GTPases, Rac and Rho. Activities of Rac and Rho are also essential for the secretory function of mast cells. In response to GTP-gamma-S and/or calcium, only a proportion of permeabilized mast cells is capable of secretory response. Here, we have compared actin organization of secreting and nonsecreting cell populations. We show that the cytoskeletal and secretory responses are strongly correlated, indicating a common upstream regulator of the two functions. The secreting cell population preferentially displays both relocalization and polymerization of actin. However, when actin relocalization or polymerization is inhibited by phalloidin or cytochalasin, respectively, secretion is unaffected. Moreover, the ability of the constitutively active mutants of Rac and Rho to enhance secretion is also unaffected in the presence of cytochalasin. Therefore, Rac and Rho control these two functions by divergent, parallel signaling pathways. Cortical actin disassembly occurs in both secreting and nonsecreting populations and does not, by itself, induce exocytosis. A model for the control of exocytosis is proposed that includes at least four GTP-binding proteins and suggests the presence of both shared and divergent signaling pathways from Rac and Rho.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献