Transient Nucleolar Localization Of U6 Small Nuclear RNA InXenopus Laevis Oocytes

Author:

Lange Thilo Sascha1,Gerbi Susan A.1

Affiliation:

1. Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912

Abstract

Recent studies on the 2′-O-methylation and pseudouridylation of U6 small nuclear RNA (snRNA) hypothesize that these posttranscriptional modifications might occur in the nucleolus. In this report, we present direct evidence for the nucleolar localization of U6 snRNA and analyze the kinetics of U6 nucleolar localization after injection of in vitro transcribed fluorescein-labeled transcripts into Xenopus laevis oocytes. In contrast to U3 small nucleolar RNA (snoRNA) which developed strong nucleolar labeling over 4 h and maintained strong nucleolar signals through 24 h, U6 snRNA localized to nucleoli immediately after injection, but nucleolar staining decreased after 4 h. By 24 h after injection of U6 snRNA, only weak nucleolar signals were observed. Unlike the time-dependent profile of strong nucleolar localization of U6 snRNA or U3 snoRNA, injection of fluorescein-labeled U2 snRNA gave weak nucleolar staining at all times throughout a 24-h period; U2 snRNA modifications are believed to occur outside of the nucleolus. The notion that the decrease of U6 signals over time was due to its trafficking out of nucleoli and not to transcript degradation was supported by the demonstration of U6 snRNA stability over time. Therefore, in contrast to snoRNAs like U3, U6 snRNA transiently passes through nucleoli.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Cell Nucleus and Its Compartments;Cellular Mechanics and Biophysics;2020

2. Long noncoding RNAs: regulation, function and cancer;Biotechnology and Genetic Engineering Reviews;2018-07-03

3. The life of U6 small nuclear RNA, from cradle to grave;RNA;2018-01-24

4. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies;Frontiers in Plant Science;2018-01-04

5. m RNA Splicing: Role of sn RNA s;eLS;2015-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3