Affiliation:
1. Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108
Abstract
The microtubule motor cytoplasmic dynein performs multiple cellular functions; however, the regulation and targeting of the motor to different cargoes is not well understood. A biochemical interaction between the dynein intermediate chain subunit and the p150-Glued component of the dynein regulatory complex, dynactin, has supported the hypothesis that the intermediate chain is a key modulator of dynein attachment to cellular cargoes. In this report, we identify multiple intermediate chain polypeptides that cosediment with the 19S dynein complex and two differentially expressed transcripts derived from the single cytoplasmic dynein intermediate chain (Cdic) gene that differ in the 3′ untranslated region sequence. These results support previous observations of multiple Cdic gene products that may contribute to the specialization of dynein function. Most significantly, we provide genetic evidence that the interaction between the dynein intermediate chain and p150-Glued is functionally relevant. We use a genomic Cdic transgene to show that extra copies of the dynein intermediate chain gene act to suppress the rough eye phenotype of the mutant Glued 1, a mutation in the p150-Glued subunit of dynactin. Furthermore, we show that the interaction between the dynein intermediate chain and p150-Glued is dependent on the dosage of the Cdic gene. This result suggests that the dynein intermediate chain may be a limiting component in the assembly of the dynein complex and that the regulation of the interaction between the dynein intermediate chain and dynactin is critical for dynein function.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献