Thiol stress–dependent aggregation of the glycolytic enzyme triose phosphate isomerase in yeast and human cells

Author:

Ford Amy E.12,Denicourt Catherine3,Morano Kevin A.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030

2. MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030

3. Department of Integrative Biology and Pharmacology, University of Texas McGovern Medical School at Houston, Houston, TX 77030

Abstract

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants, and xenobiotics. Cysteine-containing proteins are especially at risk, as the thiol side chain is subject to oxidation, adduction, and chelation by thiol-reactive compounds. The thiol-chelating heavy metal cadmium is a highly toxic environmental pollutant demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of cadmium toxicity responsible for these outcomes are largely unknown. Using fluorescent protein fusion to cytosolic proteins with known redox-active cysteines, we identified the yeast glycolytic enzyme triose phosphate isomerase as being aggregation-prone in response to cadmium and to glucose depletion in chronologically aging cultures. Cadmium-induced aggregation was limited to newly synthesized Tpi1 that was recruited to foci containing the disaggregase Hsp104 and the peroxiredoxin chaperone Tsa1. Misfolding of nascent Tpi1 in response to both cadmium and glucose-depletion stress required both cysteines, implying that thiol status in this protein directly influences folding. We also demonstrate that cadmium proteotoxicity is conserved between yeast and human cells, as HEK293 and HCT116 cell lines exhibit recruitment of the protein chaperone Hsp70 to visible foci. Moreover, human TPI, mutations in which cause a glycolytic deficiency syndrome, also forms aggregates in response to cadmium treatment, suggesting that this conserved enzyme is folding-labile and may be a useful endogenous model for investigating thiol-specific proteotoxicity.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3