Genetically induced microtubule disruption in the mouse intestine impairs intracellular organization and transport

Author:

Muroyama Andrew1,Terwilliger Michael1,Dong Bushu1,Suh Harrison1,Lechler Terry1

Affiliation:

1. Departments of Dermatology and Cell Biology, Duke University, Durham, NC 27708

Abstract

In most differentiated cells, microtubules reorganize into noncentrosomal arrays that are cell-type specific. In the columnar absorptive enterocytes of the intestine, microtubules form polarized apical–basal arrays that have been proposed to play multiple roles. However, in vivo testing of these hypotheses has been hampered by a lack of genetic tools to specifically perturb microtubules. Here we analyze mice in which microtubules are disrupted by conditional inducible expression of the microtubule-severing protein spastin. Spastin overexpression resulted in multiple cellular defects, including aberrations in nuclear and organelle positioning and deficient nutrient transport. However, cell shape, adhesion, and polarity remained intact, and mutant mice continued to thrive. Notably, the phenotypes of microtubule disruption are similar to those induced by microtubule disorganization upon loss of CAMSAP3/Nezha. These data demonstrate that enterocyte microtubules have important roles in organelle organization but are not essential for growth under homeostatic conditions.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3