Fine structure and dynamics of EB3 binding zones on microtubules in fibroblast cells

Author:

Mustyatsa V. V.12,Kostarev A. V.1,Tvorogova A. V.1,Ataullakhanov F. I.123,Gudimchuk N. B.123,Vorobjev I. A.14

Affiliation:

1. Lomonosov Moscow State University, 119991 Moscow, Russia

2. Dmitry Rogachev National Research Center of Pediatric ­Hematology, Oncology and Immunology, 117198 Moscow, Russia

3. Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia

4. Nazarbayev University, 010000 Nur-Sultan, Kazakhstan

Abstract

End-binding (EB) proteins associate with the growing tips of microtubules (MTs)and modulate their dynamics directly and indirectly, by recruiting essential factors to fine-tune MTs for their many essential roles in cells. Previously EB proteins have been shown to recognize a stabilizing GTP/GDP-Pi cap at the tip of growing MTs, but information about additional EB-binding zones on MTs has been limited. In this work, we studied fluorescence intensity profiles of one of the three mammalian EB-proteins, EB3, fused with red fluorescent protein (RFP). The distribution of EB3 on MTs in mouse fibroblasts frequently deviated from single exponential decay and exhibited secondary peaks. Those secondary peaks, which we refer to as EB3-islands, were detected on 56% comets of growing MTs and were encountered once per 44 s of EB3-RFP comet growth time with about 5 s half-lifetime. The majority of EB3-islands in the vicinity of MT tips was stationary and originated from EB3 comets moving with the growing MT tips. Computational modeling of the decoration of dynamic MT tips by EB3 suggested that the EB3-islands could not be explained simply by a stochastic first-order GTP hydrolysis/phosphate release. We speculate that additional protein factors contribute to EB3 residence time on MTs in cells, likely affecting MT dynamics.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3