Nonmuscle myosin IIA and IIB differentially modulate migration and alter gene expression in primary mouse tumorigenic cells

Author:

Halder Debdatta1,Saha Shekhar12,Singh Raman K.13,Ghosh Indranil1,Mallick Ditipriya1,Dey Sumit K.14,Ghosh Arijit1,Das Benu Brata1,Ghosh Somiranjan5,Jana Siddhartha S.1

Affiliation:

1. School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

2. Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908

3. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel

4. Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853

5. Department of Biology, Howard University, Washington, DC 20059

Abstract

Though many cancers are known to show up-regulation of nonmuscle myosin (NM) IIA and IIB, the mechanism by which NMIIs aid in cancer development remains unexplored. Here we demonstrate that tumor-generating, fibroblast-like cells isolated from 3-methylcholanthrene (3MC)-induced murine tumor exhibit distinct phospho-dependent localization of NMIIA and NMIIB at the perinuclear area and tip of the filopodia and affect cell migration differentially. While NMIIA-KD affects protrusion dynamics and increases cell directionality, NMIIB-KD lowers migration speed and increases filopodial branching. Strategically located NMIIs at the perinuclear area colocalize with the linker of nucleoskeleton and cytoskeleton (LINC) protein Nesprin2 and maintain the integrity of the nuclear-actin cap. Interestingly, knockdown of NMIIs results in altered expression of genes involved in epithelial-to-mesenchymal transition, angiogenesis, and cellular senescence. NMIIB-KD cells display down-regulation of Gsc and Serpinb2, which is strikingly similar to Nesprin2-KD cells as assessed by quantitative PCR analysis. Further gene network analysis predicts that NMIIA and NMIIB may act on similar pathways but through different regulators. Concomitantly, knockdown of NMIIA or NMIIB lowers the growth rate and tumor volume of 3MC-induced tumor in vivo. Altogether, these results open a new window to further investigate the effect of LINC-associated perinuclear actomyosin complex on mechanoresponsive gene expression in the growing tumor.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3