Affiliation:
1. The Leonard and Madlyn Abramson Family Cancer Research Institute and Cancer Center, Department of Cancer Biology, University of Pennsylvania Cancer Center, Philadelphia, PA 19104
Abstract
Exposure of cells to endoplasmic reticulum (ER) stress leads to activation of PKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, repression of cyclin D1 translation, and subsequent cell cycle arrest in G1phase. However, whether PERK is solely responsible for regulating cyclin D1 accumulation after unfolded protein response pathway (UPR) activation has not been assessed. Herein, we demonstrate that repression of cyclin D1 translation after UPR activation occurs independently of PERK, but it remains dependent on eIF2α phosphorylation. Although phosphorylation of eIF2α in PERK–/– fibroblasts is attenuated in comparison with wild-type fibroblasts, it is not eliminated. The residual eIF2α phosphorylation correlates with the kinetics of cyclin D1 loss, suggesting that another eIF2α kinase functions in the absence of PERK. In cells harboring targeted deletion of both PERK and GCN2, cyclin D1 loss is attenuated, suggesting GCN2 functions as the redundant kinase. Consistent with these results, cyclin D1 translation is also stabilized in cells expressing a nonphosphorylatable allele of eIF2α; in contrast, repression of global protein translation still occurs in these cells, highlighting a high degree of specificity in transcripts targeted for translation inhibition by phosphorylated eIF2α. Our results demonstrate that PERK and GCN2 function to cooperatively regulate eIF2α phosphorylation and cyclin D1 translation after UPR activation.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
223 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献