Identification ofHistoplasma capsulatumTranscripts Induced in Response to Reactive Nitrogen Species

Author:

Nittler M. Paige1,Hocking-Murray Davina1,Foo Catherine K.1,Sil Anita1

Affiliation:

1. Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-0414

Abstract

The pathogenic fungus Histoplasma capsulatum escapes innate immune defenses and colonizes host macrophages during infection. After the onset of adaptive immunity, the production of the antimicrobial effector nitric oxide (.NO) restricts H. capsulatum replication. However, H. capsulatum can establish persistent infections, indicating that it survives in the host despite exposure to reactive nitrogen species (RNS). To understand how H. capsulatum responds to RNS, we determined the transcriptional profile of H. capsulatum to.NO-generating compounds using a shotgun genomic microarray. We identified 695 microarray clones that were induced ≥4-fold upon nitrosative stress. Because our microarray clones were generated from random fragments of genomic DNA, they did not necessarily correspond to H. capsulatum open reading frames. To identify induced genes, we used high-density oligonucleotide tiling arrays to determine the genomic boundaries and coding strand of 153 RNS-induced transcripts. Homologues of these genes in other organisms are involved in iron acquisition, energy production, stress response, protein folding/degradation, DNA repair, and.NO detoxification. Ectopic expression of one of these genes, a P450 nitric oxide reductase homologue, was sufficient to increase resistance of H. capsulatum to RNS in culture. We propose that H. capsulatum uses the pathways identified here to cope with RNS-induced damage during pathogenesis.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3