Affiliation:
1. Departments of Pharmacology and Medicine, Medical University of Ohio, Toledo, OH 43614
2. Department of Physiology, Cornell University, Weill Medical College, New York, NY 10021
Abstract
We have shown that ouabain activates Src, resulting in subsequent tyrosine phosphorylation of multiple effectors. Here, we tested if the Na+/K+-ATPase and Src can form a functional signaling complex. In LLC-PK1 cells the Na+/K+-ATPase and Src colocalized in the plasma membrane. Fluorescence resonance energy transfer analysis indicated that both proteins were in close proximity, suggesting a direct interaction. GST pulldown assay showed a direct, ouabain-regulated, and multifocal interaction between the α1 subunit of Na+/K+-ATPase and Src. Although the interaction between the Src kinase domain and the third cytosolic domain (CD3) of α1 is regulated by ouabain, the Src SH3SH2 domain binds to the second cytosolic domain constitutively. Functionally, binding of Src to either the Na+/K+-ATPase or GST-CD3 inhibited Src activity. Addition of ouabain, but not vanadate, to the purified Na+/K+-ATPase/Src complex freed the kinase domain and restored the Src activity. Consistently, exposure of intact cells to ouabain apparently increased the distance between the Na+/K+-ATPase and Src. Concomitantly, it also stimulated tyrosine phosphorylation of the proteins that are associated with the Na+/K+-ATPase. These new findings illustrate a novel molecular mechanism of signal transduction involving the interaction of a P-type ATPase and a nonreceptor tyrosine kinase.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
315 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献