Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae.

Author:

Berkower C1,Loayza D1,Michaelis S1

Affiliation:

1. Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205.

Abstract

STE6, a member of the ATP binding cassette (ABC) transporter superfamily, is a membrane protein required for the export of the a-factor mating pheromone in Saccharomyces cerevisiae. To initiate a study of the intracellular trafficking of STE6, we have examined its half-life and localization. We report here that STE6 is metabolically unstable in a wild-type strain, and that this instability is blocked in a pep4 mutant, suggesting that degradation of STE6 occurs in the vacuole and is dependent upon vacuolar proteases. In agreement with a model whereby STE6 is routed to the vacuole via endocytosis from the plasma membrane, we show that degradation of STE6 is substantially reduced at nonpermissive temperature in mutants defective in delivery of proteins to the plasma membrane (sec6) or in endocytosis (end3 and end4). Whereas STE6 appears to undergo constitutive internalization from the plasma membrane, as do the pheromone receptors STE2 and STE3, we show that two other proteins, the plasma membrane ATPase (PMA1) and the general amino acid permease (GAP1), are significantly more stable than STE6, indicating that rapid turnover in the vacuole is not a fate common to all plasma membrane proteins in yeast. Investigation of STE6 partial molecules (half- and quarter-molecules) indicates that both halves of STE6 contain sufficient information to mediate internalization. Examination of STE6 localization by indirect immunofluorescence indicates that STE6 is found in a punctate, possibly vesicular, intracellular pattern, distinct from the rim-staining pattern characteristic of PMA1. The punctate pattern is consistent with the view that most of the STE6 molecules present in a cell at any given moment could be en route either to or from the plasma membrane. In a pep4 mutant, STE6 is concentrated in the vacuole, providing further evidence that the vacuole is the site of STE6 degradation, while in an end4 mutant STE6 exhibits rim-staining, indicating that it can accumulate in the plasma membrane when internalization is blocked. Taken together, the results presented here suggest that STE6 first travels to the plasma membrane and subsequently undergoes endocytosis and degradation in the vacuole, with perhaps only a transient residence at the plasma membrane; an alternative model, in which STE6 circumvents the plasma membrane, is also discussed.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3