Structural basis for recognition of the Sec4 Rab GTPase by its effector, the Lgl/tomosyn homologue, Sro7

Author:

Watson Kelly12,Rossi Guendalina1,Temple Brenda34,Brennwald Patrick12

Affiliation:

1. Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599

2. Graduate Program in Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599

3. Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599

4. R. L. Juliano Structural Bioinformatics Core, University of North Carolina School of Medicine, Chapel Hill, NC 27599

Abstract

Members of the tomosyn/Lgl/Sro7 family play important roles in vesicle trafficking and cell polarity in eukaryotic cells. The yeast homologue, Sro7, is believed to act as a downstream effector of the Sec4 Rab GTPase to promote soluble N-ethylmaleimide–sensitive factor adaptor protein receptor (SNARE) assembly during Golgi-to–cell surface vesicle transport. Here we describe the identification of a Sec4 binding site on the surface of Sro7 that is contained within a cleft created by the junction of two adjacent β-propellers that form the core structure of Sro7. Computational docking experiments suggested four models for interaction of GTP-Sec4 with the Sro7 binding cleft. Further mutational and biochemical analyses confirmed that only one of the four docking arrangements is perfectly consistent with our genetic and biochemical interaction data. Close examination of this docking model suggests a structural basis for the high substrate and nucleotide selectivity in effector binding by Sro7. Finally, analysis of the surface variation within the homologous interaction site on tomosyn-1 and Lgl-1 structural models suggests a possible conserved Rab GTPase effector function in tomosyn vertebrate homologues.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3