STUbL-mediated degradation of the transcription factor MATα2 requires degradation elements that coincide with corepressor binding sites

Author:

Hickey Christopher M.1,Hochstrasser Mark1

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520

Abstract

The yeast transcription factor MATα2 (α2) is a short-lived protein known to be ubiquitylated by two distinct pathways, one involving the ubiquitin-conjugating enzymes (E2s) Ubc6 and Ubc7 and the ubiquitin ligase (E3) Doa10 and the other operating with the E2 Ubc4 and the heterodimeric E3 Slx5/Slx8. Although Slx5/Slx8 is a small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase (STUbL), it does not require SUMO to target α2 but instead directly recognizes α2. Little is known about the α2 determinants required for its Ubc4- and STUbL-mediated degradation or how these determinants substitute for SUMO in recognition by the STUbL pathway. We describe two distinct degradation elements within α2, both of which are necessary for α2 recognition specifically by the Ubc4 pathway. Slx5/Slx8 can directly ubiquitylate a C-terminal fragment of α2, and mutating one of the degradation elements impairs this ubiquitylation. Surprisingly, both degradation elements identified here overlap specific interaction sites for α2 corepressors: the Mcm1 interaction site in the central α2 linker and the Ssn6 (Cyc8) binding site in the α2 homeodomain. We propose that competitive binding to α2 by the ubiquitylation machinery and α2 cofactors is balanced so that α2 can function in transcription repression yet be short lived enough to allow cell-type switching.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3