Extracting meaning from biological imaging data

Author:

Cohen Andrew R.1

Affiliation:

1. Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104

Abstract

Biological imaging continues to improve, capturing continually longer-term, richer, and more complex data, penetrating deeper into live tissue. How do we gain insight into the dynamic processes of disease and development from terabytes of multidimensional image data? Here I describe a collaborative approach to extracting meaning from biological imaging data. The collaboration consists of teams of biologists and engineers working together. Custom computational tools are built to best exploit application-specific knowledge in order to visualize and analyze large and complex data sets. The image data are summarized, extracting and modeling the features that capture the objects and relationships in the data. The summarization is validated, the results visualized, and errors corrected as needed. Finally, the customized analysis and visualization tools together with the image data and the summarization results are shared. This Perspective provides a brief guide to the mathematical ideas that rigorously quantify the notion of extracting meaning from biological image, and to the practical approaches that have been used to apply these ideas to a wide range of applications in cell and tissue optical imaging.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3