Affiliation:
1. Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
Abstract
Temperature-sensitive cdc1tsmutants are reported to stop the cell cycle upon a shift to 30°C in early G2, that is, as small budded cells having completed DNA replication but unable to duplicate the spindle pole body. A recent report showed that PGAP5, a human homologue of CDC1, acts as a phosphodiesterase removing an ethanolamine phosphate (EtN-P) from mannose 2 of the glycosylphosphatidylinositol (GPI) anchor, thus permitting efficient endoplasmic reticulum (ER)-to-Golgi transport of GPI proteins. We find that the essential CDC1 gene can be deleted in mcd4∆ cells, which do not attach EtN-P to mannose 1 of the GPI anchor, suggesting that Cdc1 removes the EtN-P added by Mcd4. Cdc1-314tsmutants do not accumulate GPI proteins in the ER but have a partial secretion block later in the secretory pathway. Growth tests and the genetic interaction profile of cdc1-314tspinpoint a distinct cell wall defect. Osmotic support restores GPI protein secretion and actin polarization but not growth. Cell walls of cdc1-314tsmutants contain large amounts of GPI proteins that are easily released by β-glucanases and not attached to cell wall β1,6-glucans and that retain their original GPI anchor lipid. This suggests that the presumed transglycosidases Dfg5 and Dcw1 of cdc1-314tstransfer GPI proteins to cell wall β1,6-glucans inefficiently.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献