Affiliation:
1. Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
Abstract
Loss of function of the enzyme β-hexosaminidase A (HexA) causes the lysosomal storage disorder Tay–Sachs disease (TSD). It has been proposed that mutations in the α chain of HexA can impair folding, enzyme assembly, and/or trafficking, yet there is surprisingly little known about the mechanisms of these potential routes of pathogenesis. We therefore investigated the biosynthesis and trafficking of TSD-associated HexA α mutants, seeking to identify relevant cellular quality control mechanisms. The α mutants E482K and G269S are defective in enzymatic activity, unprocessed by lysosomal proteases, and exhibit altered folding pathways compared with wild-type α. E482K is more severely misfolded than G269S, as observed by its aggregation and inability to associate with the HexA β chain. Importantly, both mutants are retrotranslocated from the endoplasmic reticulum (ER) to the cytosol and are degraded by the proteasome, indicating that they are cleared via ER-associated degradation (ERAD). Leveraging these discoveries, we observed that manipulating the cellular folding environment or ERAD pathways can alter the kinetics of mutant α degradation. Additionally, growth of patient fibroblasts at a permissive temperature or with chemical chaperones increases cellular Hex activity by improving mutant α folding. Therefore modulation of the ER quality control systems may be a potential therapeutic route for improving some forms of TSD.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献