Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast.

Author:

Pangilinan F1,Spencer F1

Affiliation:

1. Center for Medical Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

Saccharomyces cerevisiae cells containing one or more abnormal kinetochores delay anaphase entry. The delay can be produced by using centromere DNA mutations present in single-copy or kinetochore protein mutations. This observation is strikingly similar to the preanaphase delay or arrest exhibited in animal cells that experience spontaneous or induced failures in bipolar attachment of one or more chromosomes and may reveal the existence of a conserved surveillance pathway that monitors the state of chromosome attachment to the spindle before anaphase. We find that three genes (MAD2, BUB1, and BUB2) that are required for the spindle assembly checkpoint in budding yeast (defined by antimicrotubule drug-induced arrest or delay) are also required in the establishment and/or maintenance of kinetochore-induced delays. This was tested in strains in which the delays were generated by limited function of a mutant kinetochore protein (ctf13-30) or by the presence of a single-copy centromere DNA mutation (CDEII delta 31). Whereas the MAD2 and BUB1 genes were absolutely required for delay, loss of BUB2 function resulted in a partial delay defect, and we suggest that BUB2 is required for delay maintenance. The inability of mad2-1 and bub1 delta mutants to execute kinetochore-induced delay is correlated with striking increases in chromosome missegregation, indicating that the delay does indeed have a role in chromosome transmission fidelity. Our results also indicated that the yeast RAD9 gene, necessary for DNA damage-induced arrest, had no role in the kinetochore-induced delays. We conclude that abnormal kinetochore structures induce preanaphase delay by activating the same functions that have defined the spindle assembly checkpoint in budding yeast.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3