Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells.

Author:

Hanna P C1,Kochi S1,Collier R J1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Experiments were performed to probe the mechanism by which Bacillus anthracis Lethal Toxin (LeTx) causes lysis of J774 macrophage-like cells. After incubation of cells with saturating concentrations of the toxin, two categories of effects were found, which were distinguishable on the basis of chronology, Ca(2+)-dependence, and sensitivity to osmolarity. The earliest events (category I), beginning 45 min postchallenge, were an increase in permeability to 22Na and 86Rb and a rapid conversion of ATP to ADP and AMP. Later events (category II) included alterations in membrane permeability to 45Ca, 51Cr, 36Cl, 35SO4, 3H-amino acids, and 3H-uridine, beginning at 60 min; inhibition of macromolecular synthesis, leakage of cellular lactate dehydrogenase and onset of gross morphological changes, at approximately 75 min; and cell lysis, beginning at 90 min. Category II events exhibited an absolute requirement for extracellular Ca2+ and were blocked by addition of 0.3 M sucrose to the medium, whereas category I events were attenuated, but not blocked, by either of these conditions. On the other hand, both ATP depletion and the category II events were blocked in osmotically stabilized medium that was also isoionic for Na+ and K+. This suggests that permeabilization of the plasma membrane to monovalent cations and water may be the earliest of the physiological changes described here. The resulting influx of Na+ and efflux of K+ would be expected to cause depletion of ATP, via increased activity of the Na+/K+ pump. Subsequently the influx of Ca2+, induced by depletion of ATP, imbalances in monovalent cautions, and/or more dramatic changes in permeability due to influx of water, would be expected to trigger widespread changes leading ultimately to cytolysis.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3