Knockdown of p180 Eliminates the Terminal Differentiation of a Secretory Cell Line

Author:

Benyamini Payam1,Webster Paul2,Meyer David I.1

Affiliation:

1. *Department of Biological Chemistry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; and

2. Ahmanson Center for Advanced EM and Imaging, House Ear Institute, Los Angeles, CA 90057

Abstract

We have previously reported that the expression in yeast of an integral membrane protein (p180) of the endoplasmic reticulum (ER), isolated for its ability to mediate ribosome binding, is capable of inducing new membrane biogenesis and an increase in secretory capacity. To demonstrate that p180 is necessary and sufficient for terminal differentiation and acquisition of a secretory phenotype in mammalian cells, we studied the differentiation of a secretory cell line where p180 levels had been significantly reduced using RNAi technology and by transiently expressing p180 in nonsecretory cells. A human monocytic (THP-1) cell line, that can acquire macrophage-like properties, failed to proliferate rough ER when p180 levels were lowered. The Golgi compartment and the secretion of apolipoprotein E (Apo E) were dramatically affected in cells expressing reduced p180 levels. On the other hand, expression of p180 in a human embryonic kidney nonsecretory cell line (HEK293) showed a significant increase in proliferation of rough ER membranes and Golgi complexes. The results obtained from knockdown and overexpression experiments demonstrate that p180 is both necessary and sufficient to induce a secretory phenotype in mammalian cells. These findings support a central role for p180 in the terminal differentiation of secretory cells and tissues.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3