More Than a Repair Enzyme:Aspergillus nidulansPhotolyase-like CryA Is a Regulator of Sexual Development

Author:

Bayram Özgür1,Biesemann Christoph1,Krappmann Sven1,Galland Paul2,Braus Gerhard H.1

Affiliation:

1. *Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany; and

2. Faculty of Biology, Philipps University, D-35032 Marburg, Germany

Abstract

Cryptochromes are blue-light receptors that have presumably evolved from the DNA photolyase protein family, and the genomes of many organisms contain genes for both types of molecules. Both protein structures resemble each other, which suggests that light control and light protection share a common ancient origin. In the genome of the filamentous fungus Aspergillus nidulans, however, only one cryptochrome/photolyase-encoding gene, termed cryA, was identified. Deletion of the cryA gene triggers sexual differentiation under inappropriate culture conditions and results in up-regulation of transcripts encoding regulators of fruiting body formation. CryA is a protein whose N- and C-terminal synthetic green fluorescent protein fusions localize to the nucleus. CryA represses sexual development under UVA350-370 nmlight both on plates and in submerged culture. Strikingly, CryA exhibits photorepair activity as demonstrated by heterologous complementation of a DNA repair-deficient Escherichia coli strain as well as overexpression in an A. nidulans uvsBΔ genetic background. This is in contrast to the single deletion cryAΔ strain, which does not show increased sensitivity toward UV-induced damage. In A. nidulans, cryA encodes a novel type of cryptochrome/photolyase that exhibits a regulatory function during light-dependent development and DNA repair activity. This represents a paradigm for the evolutionary transition between photolyases and cryptochromes.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3