Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation inCandida albicans

Author:

Lu Yang1,Su Chang1,Mao Xuming1,Raniga Prashna Pala2,Liu Haoping2,Chen Jiangye1

Affiliation:

1. *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai 200031, China; and

2. Department of Biological Chemistry, College of Medicine, University of California, Irvine, Irvine, CA 92697-1700

Abstract

Efg1 is essential for hyphal development and virulence in the human pathogenic fungus Candida albicans. How Efg1 regulates gene expression is unknown. Here, we show that Efg1 interacts with components of the nucleosome acetyltransferase of H4 (NuA4) histone acetyltransferase (HAT) complex in both yeast and hyphal cells. Deleting YNG2, a subunit of the NuA4 HAT module, results in a significant decrease in the acetylation level of nucleosomal H4 and a profound defect in hyphal development, as well as a defect in the expression of hypha-specific genes. Using chromatin immunoprecipitation, Efg1 and the NuA4 complex are found at the UAS regions of hypha-specific genes in both yeast and hyphal cells, and Efg1 is required for the recruitment of NuA4. Nucleosomal H4 acetylation at the promoters peaks during initial hyphal induction in an Efg1-dependent manner. We also find that Efg1 bound to the promoters of hypha-specific genes is critical for recruitment of the Swi/Snf chromatin remodeling complex during hyphal induction. Our data show that the recruitment of the NuA4 complex by Efg1 to the promoters of hypha-specific genes is required for nucleosomal H4 acetylation at the promoters during hyphal induction and for subsequent binding of Swi/Snf and transcriptional activation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3