Kinesin-1 and Cytoplasmic Dynein Act Sequentially to Move the Meiotic Spindle to the Oocyte Cortex inCaenorhabditis elegans

Author:

Ellefson Marina L.1,McNally Francis J.1

Affiliation:

1. Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616

Abstract

During female meiosis in animals, the meiotic spindle is attached to the egg cortex by one pole during anaphase to allow selective disposal of half the chromosomes in a polar body. In Caenorhabditis elegans, this anaphase spindle position is achieved sequentially through kinesin-1–dependent early translocation followed by anaphase-promoting complex (APC)-dependent spindle rotation. Partial depletion of cytoplasmic dynein heavy chain by RNA interference blocked spindle rotation without affecting early translocation. Dynein depletion also blocked the APC-dependent late translocation that occurs in kinesin-1–depleted embryos. Time-lapse imaging of green fluorescent protein-tagged dynein heavy chain as well as immunofluorescence with dynein-specific antibodies revealed that dynein starts to accumulate at spindle poles just before the initiation of rotation or late translocation. Accumulation of dynein at poles was kinesin-1 independent and APC dependent, just like dynein driven spindle movements. This represents a case of kinesin-1/dynein coordination in which these two motors of opposite polarity act sequentially and independently on a cargo to move it in the same direction.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3