ATP-dependent and ATP-independent pathways of exocytosis revealed by interchanging glutamate and chloride as the major anion in permeabilized mast cells.

Author:

Churcher Y1,Gomperts B D1

Affiliation:

1. Department of Physiology, University College London, UK.

Abstract

Most investigations of the mechanism of regulated exocytosis have involved the use of secretory cells permeabilized in glutamate-based electrolyte solutions. In our previous work we have used NaCl-based electrolyte solutions. For secretion to occur from rat mast cells under these latter conditions, a dual effector system comprising Ca2+ and a guanine nucleotide are required; together they are sufficient. Here we compare the secretion from mast cells permeabilized in solutions of different electrolytes. Replacement of Na+ by K+ had little effect. Replacement of Cl- by Br-, SO4-, gluconate, isethionate, acetate, tartrate, succinate, etc. affected the maximal extent of secretion elicited by the dual effectors Ca2+ and guanosine-5'-O-(3-thiotriphosphate) (Ca2(+)-plus-GTP-gamma-S) but had little influence on the effective affinity for Ca2+. The dicarboxylic amino acids (L- and D-glutamate, and L-aspartate) permitted exocytosis to be elicited by Ca2+ or GTP-gamma-S alone. Secretion stimulated by GTP-gamma-S is strongly inhibited by Cl- (50% inhibition by 20 mM Cl-), whereas the extent of Ca2(+)-induced secretion is proportional to the concentration of glutamate in mixed electrolyte buffers. Unlike dual-effector stimulation, secretion due to the single effectors requires adenosine triphosphate (ATP) and is prevented by inhibitors of protein kinase C. These results point to the existence of two parallel pathways for control of exocytosis in permeabilized cells, one ATP dependent, the other ATP independent.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3