Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin.

Author:

Maeda K1,Nakata T1,Noda Y1,Sato-Yoshitake R1,Hirokawa N1

Affiliation:

1. Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.

Abstract

We purified a large amount of dynamin with high enzymatical activity from rat brain tissue by a new procedure. Dynamin 0.48 mg was obtained from 20 g of rat brain. The purity of dynamin was almost 98%. Dynamin plays a role of GTPase rather than ATPase. In the absence of microtubules, Michaelis constant (Km) and maximum velocity (Vmax) for dynamin GTPase were 370 microM and 0.25 min-1, respectively, and in their presence, both were significantly accelerated up to 25 microM and 5.5 min-1. On the other hand, the ATPase activity was very low in the absence of microtubules, and even in their presence, Km and Vmax for dynamin ATPase were 0.2 mM and 0.91 min-1. Despite slow GTPase turnover rate in the absence of microtubules, binding of GTP and its nonhydrolizing analogues was very fast, indicating that GTP binding step is not rate limiting. Dynamin did not cause a one-directional consistent microtubule sliding movement just like kinesin or dynein in the presence of 2 mM ATP or 2 mM GTP. We observed the molecular structure of dynamin with low-angle rotary shadowing technique and revealed that the dynamin molecule is globular in shape. Gel filtration assay revealed that these globules were the oligomers of 100-kDa dynamin polypeptide. Dynamin bound to microtubules with a 1:1 approximately 1.2 molar ratio in the absence of GTP. Quick-freeze deep-etch electron microscopy of the dynamin-microtubule complex showed that dynamin decorates the surface of microtubules helically, like a screw bolt, very orderly and tightly with 11.4 +/- 0.9 (SD)nm period. Contrary to the previous report, microtubules make bundles by the attachment of the dynamin helixes around each adjacent microtubule, and no cross-bridge formation was observed.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3